A scanning line source for simultaneous emission and transmission measurements in SPECT.
نویسندگان
چکیده
A scanning collimated line source for simultaneously acquiring emission and transmission data from a gamma camera has been developed. The line source is microprocessor-controlled and incorporates hardware to electronically window the spatial gamma camera signals in order to separate the emission signals of the subject from transmission signals from the line source. The device improves upon the previously described emission-transmission scanning technique using a flood source in three ways: (1) it overcomes the limitation that the transmission radionuclide must have a lower energy than the emission radionuclide; (2) it provides narrow-beam (scatter free) attenuation measurements of the subject being examined; and (3) it reduces the radiation exposure to staff. Attenuation coefficients for an elliptocal water-filled phantom were measured to be mu = 0.15 +/- 0.01 cm-1. The technique has been validated in phantom and human studies using a range of radionuclide combinations and imaging geometries and gives equivalent results using separate and simultaneous acquisitions.
منابع مشابه
روشی جدید جهت بهینهسازی تصحیح اثر تضعیف پرتوهای گاما در تصویرگیری از قلب با روش SPECT
In nuclear medicine, studies of important tissues such as cardiac, the emitted photons from the cardiac before reaching the gamma detectors are attenuated and scattered by other tissues inside the thorax. Therefore, the quality and contrast of the image will be reduced. In this research, to improve the quality of cardiac images by SPECT system, the most convenient algorithms for attenuation cor...
متن کاملReview of transmission scanning configurations in cardiac SPECT
The diagnostic accuracy of single photon emission computed tomography (SPECT) is profoundly influenced by attenuation phenomenon. Soft tissue attenuation degrades cardiac SPECT image quality, thereby decreasing the possibility of the detection of the lesions. A variety of correction techniques based on different assumptions have been used to reduce the impact of attenuation. Several types of sy...
متن کاملAttenuation correction in myocardial perfusion SPECT using sequential transmission - emission scanning with 99mTc [Persain]
Introduction: Nowadays, Imaging of the myocardial perfusion (MPI) using the single photon emission tomography (SPET) in the diagnosis of coronary artery disease, especially myocardial ischemia, is of great importance. In contrast to the coronary artery angiography, MPI is non-invasive, less expensive and more physiological. Unfortunately, this image is affected by the some artifacts. Thes...
متن کاملMonte Carlo Study of the Effect of Backscatter Materail Thickness on 99mTc Source Response in Single Photon Emission Computed Tomography
Introduction SPECT projections are contaminated by scatter radiation, resulting in reduced image contrast and quantitative errors. Backscatter constitutes a major part of the scatter contamination in lower energy windows. The current study is an evaluation of the effect of backscatter material on FWHM and image quality investigated by Monte Carlo simulation. Materials and Methods SIMIND program...
متن کاملDiagnostic accuracy of simultaneous acquisition of transmission and emission data with technetium-99m transmission source on thallium-201 myocardial SPECT.
PURPOSE This study evaluates not only the clinical usefulness but also the problems in attenuation correction for thallium-201 (Tl-201) myocardial SPECT by means of simultaneous transmission and emission data acquisition in the detection of coronary artery disease (CAD). METHODS A three-detector SPECT system equipped with a Tc-99m line source and fan-beam collimators was used for simultaneous...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 34 10 شماره
صفحات -
تاریخ انتشار 1993